On the Conjugacy of Orthogonal Groups
نویسنده
چکیده
In much of the mathematical literature, there is talk about the (note the definite article) orthogonal group O(n, F I ) of degree n ∈ N I over a field F I . This is extremely misleading, because, given a linear space T of dimension n, one can consider the orthogonal group of any non-degenerate quadratic form Q on T . In Chapter 6 of the book Basic Algebra I [J], Jacobson denotes this orthogonal group by O(Q). Since there are many such quadratic forms, there are many orthogonal groups. The main purpose of this paper is to study the relations between them and, in particular, determine under what conditions they are conjugate, I was able to find a complete answer in the case when F I is an ordered field. (See Theorem 7 below.)
منابع مشابه
On the Regular Power Graph on the Conjugacy Classes of Finite Groups
emph{The (undirected) power graph on the conjugacy classes} $mathcal{P_C}(G)$ of a group $G$ is a simple graph in which the vertices are the conjugacy classes of $G$ and two distinct vertices $C$ and $C'$ are adjacent in $mathcal{P_C}(G)$ if one is a subset of a power of the other. In this paper, we describe groups whose associated graphs are $k$-regular for $k=5,6$.
متن کاملA NOTE ON THE COMMUTING GRAPHS OF A CONJUGACY CLASS IN SYMMETRIC GROUPS
The commuting graph of a group is a graph with vertexes set of a subset of a group and two element are adjacent if they commute. The aim of this paper is to obtain the automorphism group of the commuting graph of a conjugacy class in the symmetric groups. The clique number, coloring number, independent number, and diameter of these graphs are also computed.
متن کاملA Probabilistic Approach to Conjugacy Classes in the Finite Symplectic and Orthogonal Groups By Jason Fulman
Markov chains are used to give a purely probabilistic way of understanding the conjugacy classes of the finite symplectic and orthogonal groups in odd characteristic. As a corollary of these methods one obtains a probabilistic proof of Steinberg’s count of unipotent matrices and generalizations of formulas of Rudvalis and Shinoda.
متن کاملA Probabilistic Approach to Conjugacy Classes in the Finite Symplectic and Orthogonal Groups
Markov chains are used to give a purely probabilistic way of understanding the conjugacy classes of the finite symplectic and orthogonal groups in odd characteristic. As a corollary of these methods one obtains a probabilistic proof of Steinberg’s count of unipotent matrices and generalizations of formulas of Rudvalis and Shinoda.
متن کاملOn the type of conjugacy classes and the set of indices of maximal subgroups
Let $G$ be a finite group. By $MT(G)=(m_1,cdots,m_k)$ we denote the type of conjugacy classes of maximal subgroups of $G$, which implies that $G$ has exactly $k$ conjugacy classes of maximal subgroups and $m_1,ldots,m_k$ are the numbers of conjugates of maximal subgroups of $G$, where $m_1leqcdotsleq m_k$. In this paper, we give some new characterizations of finite groups by ...
متن کاملSome connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups
Let $G$ be a finite group. We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$. In this paper we characterize solvable groups $G$ in which the derived covering number is finite.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008